31+49n=1-7n^2-41n

Simple and best practice solution for 31+49n=1-7n^2-41n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31+49n=1-7n^2-41n equation:



31+49n=1-7n^2-41n
We move all terms to the left:
31+49n-(1-7n^2-41n)=0
We get rid of parentheses
7n^2+41n+49n-1+31=0
We add all the numbers together, and all the variables
7n^2+90n+30=0
a = 7; b = 90; c = +30;
Δ = b2-4ac
Δ = 902-4·7·30
Δ = 7260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7260}=\sqrt{484*15}=\sqrt{484}*\sqrt{15}=22\sqrt{15}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-22\sqrt{15}}{2*7}=\frac{-90-22\sqrt{15}}{14} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+22\sqrt{15}}{2*7}=\frac{-90+22\sqrt{15}}{14} $

See similar equations:

| x(9)=7x+22 | | 2+5x-9=2x+3(x-7) | | 11y-12=11+8(y+3) | | 4+3/10x=13 | | 11z-9=1+7(z+3) | | 12x+6=2(5x+3) | | 2(-18+3y)-6y=6 | | (4x+2x)*4x=(3+5)*3 | | 16d=2,865 | | 5b-10=8+8(b+8) | | 5x−2=4x+2 | | 2(c+10)+12=4c-3 | | 15x-12+5×-18=90 | | 15x-12+5×-18=180 | | 8(y+5)+2=8y-10 | | 2k-7=1+5(k=11) | | 2k-7=1+5(k=11 | | A-7=5+5(a+5) | | -1+13n=-2n^2+6n-7 | | 1/3(6x-12)+3x=46 | | 5(k+3)+10=12k-8 | | 3x-2+5x-3=-53 | | 14+5x-3=3x+2+2x | | 2x+3x+20=25 | | 3b-9=5+8(b+2) | | 11n+15=48 | | 2.3674=(1+r)10 | | |1÷x+1|=4 | | 4x*3x=108 | | 3(b+5)12=5b-7 | | 10n+25=45 | | 5(c+12)+7=10c-10 |

Equations solver categories